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ABSTRACT

A new formulation is presented for the sys-

tematic development of perfectly matched

layers (PML) from Maxwell’s equations in

properly constructed anisotropic media. The

proposed formulation has an important ad-

vantage over the original Berenger7s PML in

that it can be implemented in the time do-

main without any splitting of the fields. Re-

sults from 3-D simulations illustrate the ef-

fectiveness of the proposed method.

INTRODUCTION

Over the past two years, Berenger’s per-

fectly matched layer (PML) for the reflection-

less truncation of differential equation-based

wave simulations [1] has become the focus of

extensive research. In addition to Berenger>s

original split-field formulation [1], as well

as its interpretation in terms of a modified

Maxwellian system with coordinate stretch-

ing [2], attempts have been made to avoid

the need for field-splitting either in terms of

the development of some type of anisotropic

medium [s], or by the development of an

alternative form of Berenger7s equations in

terms of time- and field-dependent sources

[4]. These attempts have been only par- E!m

tially successful. The anisotropic medium

approach of [3] appears to work well for

frequency-domain applications; however, its

application in time-domain simulation has

so far been hindered by stability problems.

The time-dependent source implement ation

of Berenger’s equations reported in [4] is lim-

ited by the fact that it still requires the use

of the split-field formulation at the regions

where PMLs overlap.

In this paper, a generalized theory of the

perfectly mat ched medium concept is pre-

sented that leads to the development of PMLs

that can be implemented for the truncation

of Finite-Difference Time-Domain (FDTD)

grids without splitting of the fields.

GT-PML THEORY

We begin with the conjecture that the

perfectly matched medium is an anisotropic

medium with permeability and permittivity

tensors given by

(1)F = p (diag{a, 4 c}) = P[A]
where the elements of the diagonal matrix

[A] = diag{a, b, c} are, in general, complex,

dimensionless, constants.
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Let us define the field quantities E and H

as follows:

{E., ~v, E.}T = [G’] -l{-%, E,, E,}T,

{H., Hy, H,)T = [G]-l{H., H,, Hz}T (2)

where T clenotes matrix transposition and

[G] = diag{g.,gv,g. } where g.,gy,g. are, in
general, complex constants. Choosing g., gv

and g, such that

9.=A, 9Y =6, %=6 (3)

it can be shown that Maxwell’s equations take

the form

Va x E = –jwpH,

v. x H = jLOtE,

v., (6E) = o,

v.. (pH) = o (4)

where

It can be shown that plane wave solutions of

(4) are characterized by the dispersion rela-

tion 02pe = (~Z/gz)2 + (~y~9v)2 + (~z/9z)27

which is satisfied by

lcz = leg. sin 0 cos ~,

& = ligv sin 0 sin #,

k. = kg. COS 0 (6)

where k = w@.

To demonstrate how a perfectly matched

medium can be constructed on the basis of

(4), consider a two-media interface parallel

to the z – y plane. The fields in medium

1 satisfy (4) with material properties Cl [Al],

P1 [Al], and corresponding stretching param-

eters 9Z1 ?9Y1~921. The fields in medium 2

satisfy (4) with material properties C2[A2],

P2[A2], and corresponding stretching param-

eters 9X2 ?9g2 ~9Z2. Through a standard reflec-

tion coefficient analysis it can be shown that

the interface can be rendered reflectionless for

all frequencies and all angles of incidence of

a plane wave propagating, say, from medium

1 to medium 2, if

cl = f=2, pl = /42,

9X1— – 9’2_— (7)
gyl 9y2

Furthermore, in view of the expression of k.

in (6), attenuation of the transmitted wave

in medium 2 can be effected by proper selec-

tion of gZ2. Thus, a reflectionless (perfectly

matched) medium is constructed. For exam-

ple, for the case where medium 1 is homoge-

neous and isotropic it is grl = gyl = g~l =

1, and the interface will be reflectionless if

the permittivities and permeabilities are the

same and the elements of [A2] are such that

gzz = gvz = 1, This, in view of (3), results

in a2 = b2 and c2a2 = 1 which, in turn, give

gzQ = aQ. If we let az = 1 + (0/jwc) (where we
have set c1 = C2 = q pl = p2 = p), Maxwell’s

first curl equation inside the anisotropic per-

fectly matched medium becomes

%H$=-’WHX-:HZ

H%-%) =-’WHY-:HY

(8a)

(8b)

(’+ax~”a ‘-’”HZ
(8c)

With regards to the time-dependent form

of the above equations, we observe that

(8a),(8b) have the standard form for wave

propagation in a lossy medium with magnetic
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conductivity a“ = r_T(p/c). Transforming (8c)

to the time domain we obtain

= f9Hz(t) (7 ‘ (9E,(T) aE.(T) ~T

— —— /(f%coax–ay )
(9)

The integral on the right-hand side of (9) is

simply the time integration of the z compo-

nent of V x E, and is interpreted as a time-

dependent source present only within the per-

fectly matched, anisotropic absorber.

From duality it is apparent that a system

similar to (8) is obtained from Maxwell’s curl

equation for the magnetic field. Thus, a time-

dependent source term, involving the time in-

tegral of the z component of V x H, appears

in the update equation for E. (the component

of E normal to the interface). Thus, for per-

fectly matched, anisotropic media with one

direction of attenuation, two time-dependent

sources appear in the time-dependent form of

Maxwell’s equations. These results can be ex-

tended to perfectly matched, anisotropic me-

dia with more than one directions of attenu-

ation. In all cases, there is no need for field

splitting; instead, equations with dependent

sources of the form of (9) occur.

NUMERICAL VALIDATION

In order to validate numerically the derived

time-dependent source implementation of the

anisotropic, perfectly matched medium, a z-

directed point source at the center of a 50 x

50 x 51-cell domain, ~jV, was excited by a

smooth compact pulse. The domain of com-

put ation was terminated by either Berenger’s

PML backed by perfect electric conductors,

or by the proposed GT-PML also backed

by perfect electric conductors. The bench-

mark FD-TD solution, with zero truncation

boundary reflections, was obtained b:y simu-

lating radiation by the aforementioned point

source in a much larger domain, QL, centered

at the point source, discretized by a finite-

difference grid of same cell size as that for ~N,

and with truncation boundaries placed suffi-

ciently far away to provide for causal isolation

for all points in ON over the time interval used

for the comparisons. The error due to nu-

merical reflections caused by the presence of

the conductor-backed PMLs was obtained by

subtracting at each time step the fielcl at any

grid point inside ON from the field at the cor-

responding point in fl~. Fig. 1 compiwes the

local error for EZ (x, O, O) as observed at time

step 100 for the standard Berenger”s PML

(dashed-line) to that for the proposed GT-

PML (solid line). In both cases, an eight-

element PML was used with quadratic vari-

ation in the conductivities. The effectiveness

of the proposed GT-PML is clearly demon-

strated.

@o~~o

X Variation (Cell #)

Figure 1: Local error in ~Z (z, O, 0~1 within

a 50 x 50 x 51-cell FD-TD grid with a

pulsed z–directed point source at its cen-

ter. Grid truncation was effected using 8-

layer Berenger’s split-field PML, as well as

the proposed 8-layer unsplit-field GT-PML.
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CONCLUSION

A new generalized mathematical formu-

lation has been presented for the system-

atic development of perfectly matched lay-

ers from Maxwell’s equations in properly con-

structed anisotropic media, These layers can

be used for numerical grid truncation in both

frequency- and time-dependent wave simula-

tions using finite-difference techniques. The

proposed formulation has the advantage that

it can be implemented in the time domain

without any splitting of the fields.
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