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ABSTRACT

A new formulation is presented for the sys-
tematic development of perfectly matched
layers (PML) from Maxwell’s equations in
properly constructed anisotropic media. The
proposed formulation has an important ad-
vantage over the original Berenger’s PML in
that it can be implemented in the time do-
main without any splitting of the fields. Re-
sults from 3-D simulations illustrate the ef-
fectiveness of the proposed method.

INTRODUCTION

Over the past two years, Berenger’s per-
fectly matched layer (PML) for the reflection-
less truncation of differential equation-based
wave simulations [1] has become the focus of
extensive research. In addition to Berenger’s
original split-field formulation [1], as well
as its interpretation in terms of a modified
Maxwellian system with coordinate stretch-
ing [2], attempts have been made to avoid
the need for field-splitting either in terms of
the development of some type of anisotropic
medium [3], or by the development of an
alternative form of Berenger’s equations in
terms of time- and field-dependent sources
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[4]. These attempts have been only par-
tially successful. The anisotropic medium
approach of [3] appears to work well for
frequency-domain applications; however, its
application in time-domain simulation has
so far been hindered by stability problems.
The time-dependent source implementation
of Berenger’s equations reported in [4] is lim-
ited by the fact that it still requires the use
of the split-field formulation at the regions
where PMLs overlap.

In this paper, a generalized theory of the
perfectly matched medium concept is pre-
sented that leads to the development of PMLs
that can be implemented for the truncation
of Finite-Difference Time-Domain (FDTD)
grids without splitting of the fields.

GT-PML THEORY

We begin with the conjecture that the
perfectly matched medium is an anisotropic
medium with permeability and perraittivity
tensors given by

€ = ¢ (diag{a, b, c}) = [A],
i = p(diag{a,b,c}) = p[A] (1)
where the elements of the diagonal matrix

[A] = diag{a,b,c} are, in general, complex,
dimensionless, constants.
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Let us define the field quantities E and H
as follows:

{E$7 Ey? EZ}T = [G]_l{EJJ’ Ey’ EZ}T’

{H,, H,, 1.} = [G)"{H,, H,, H.}"  (2)

where T denotes matrix tranposition and

[G] = diag{9., 9y, 9.} where g.,gy,9. are, in
general, complex constants. Choosing ¢, g,
and g, such that

ga::\/Ea gy:\/c_a7 gz:\/a_b (3)

it can be shown that Maxwell’s equations take
the form

Vax E=—jwuH,

Va x H = jwek,
a (6E) =0,
Va- (uH) =0 (4)
where
of . 1 1 1
V. ¥ %—0,+9—0, +2—0, (5)
Iz 9y g

It can be shown that plane wave solutions of
(4) are characterized by the dispersion rela-
tion w?ue = (kz/9s)? + (ky/94)* + (k2/g:)?,
which is satisfied by

k, = kg, sin @ cos ¢,

k, = kg, sinfsin ¢,
k, = kg, cos @ (6)
where k = w, /pe.

To demonstrate how a perfectly matched
medium can be constructed on the basis of
(4), consider a two-media interface parallel
to the = — y plane. The fields in medium
1 satisfy (4) with material properties €;[A4],
p1[A1], and corresponding stretching param-
eters gs1,9y1,9.1- The fields in medium 2
satisfy (4) with material properties e;[As],
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p2[As], and corresponding stretching param-
eters g2, gy2, g»2. Through a standard reflec-
tion coefficient analysis it can be shown that
the interface can be rendered reflectionless for
all frequencies and all angles of incidence of
a plane wave propagating, say, from medium
1 to medium 2, if

€1 = €2, M1 = U3,
o1 _ gz2 (7)
gyl gy2

Furthermore, in view of the expression of &,
in (6), attenuation of the transmitted wave
in medium 2 can be effected by proper selec-
tion of g,o. Thus, a reflectionless (perfectly
matched) medium is constructed. For exam-
ple, for the case where medium 1 is homoge-
neous and isotropic it is g1 = g1 = g =
1, and the interface will be reflectionless if
the permittivities and permeabilities are the
same and the elements of [A;] are such that
gz2 = gy2 = 1. This, in view of (3), results
in az = by and ca; = 1 which, in turn, give
gz2 = ag. If welet ag = 14 (0/jwe) (where we
have set €; = €3 = €, 11 = pg = ), Maxwell’s
first curl equation inside the anisotropic per-
fectly matched medium becomes

1 (0E, OE,\ . o
; ( 3y P ) = —JwH, GHZ (8a)
1 (0E, OE,\ . o
; ( 8z Oz ) = —jwH, - ZHy (82)
c\1(0E, OE.\ _ .
(1+jwe);<8w B 8y)_ Jwh,
(8¢c)

With regards to the time-dependent form
of the above equations, we observe that
(8a),(8b) have the standard form for wave
propagation in a lossy medium with magnetic



conductivity o* = o(g/e). Transforming (8c)
to the time domain we obtain

1 (8Ey(t) B aEz(t)>
p\ Oz Oy
_ _0Hz(t) B _‘{/t (8Ey(7') B aEx('r)) i
ot € Jo Oz Jy

(9)
The integral on the right-hand side of (9) is
simply the time integration of the z compo-
nent of V x E, and is interpreted as a time-
dependent source present only within the per-
fectly matched, anisotropic absorber.

From duality it is apparent that a system
similar to (8) is obtained from Maxwell’s curl
equation for the magnetic field. Thus, a time-
dependent source term, involving the time in-
tegral of the z component of V x H, appears
in the update equation for E, (the component
of E normal to the interface). Thus, for per-
fectly matched, anisotropic media with one
direction of attenuation, two time-dependent
sources appear in the time-dependent form of
Maxwell’s equations. These results can be ex-
tended to perfectly matched, anisotropic me-
dia with more than one directions of attenu-
ation. In all cases, there is no need for field
splitting; instead, equations with dependent
sources of the form of (9) occur.

NUMERICAL VALIDATION

In order to validate numerically the derived
time-dependent source implementation of the
anisotropic, perfectly matched medium, a z-
directed point source at the center of a 50 x
50 x 51-cell domain, Qy, was excited by a
smooth compact pulse. The domain of com-
putation was terminated by either Berenger’s
PML backed by perfect electric conductors,
or by the proposed GT-PML also backed
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by perfect electric conductors. The bench-
mark FD-TD solution, with zero truncation
boundary reflections, was obtained by simu-
lating radiation by the aforementioned point
source in a much larger domain, Qr, centered
at the point source, discretized by a finite-
difference grid of same cell size as that for Qp,
and with truncation boundaries placed suffi-
ciently far away to provide for causal isolation
for all points in 2y over the time interval used
for the comparisons. The error due to nu-
merical reflections caused by the presence of
the conductor-backed PMLs was obtained by
subtracting at each time step the field at any
grid point inside Q from the field at the cor-
responding point in Q. Fig. 1 compares the
local error for E,(z,0,0) as observed at time
step 100 for the standard Berenger’s PML
(dashed-line) to that for the proposed GT-
PML (solid line). In both cases, an eight-
element PML was used with quadratic vari-
ation in the conductivities. The effectiveness
of the proposed GT-PML is clearly demon-
strated.
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Figure 1: Local error in E,(z,0,0) within
a 50 x 50 x 5l-cell FD-TD grid with a
pulsed z—directed point source at its cen-
ter. Grid truncation was effected using 8-
layer Berenger’s split-field PML, as well as
the proposed 8-layer unsplit-field GT-PML.



CONCLUSION

A new generalized mathematical formu-
lation has been presented for the system-
atic development of perfectly matched lay-
ers from Maxwell’s equations in properly con-
structed anisotropic media. These layers can
be used for numerical grid truncation in both
frequency- and time-dependent wave simula-
tions using finite-difference techniques. The
proposed formulation has the advantage that
it can be implemented in the time domain
without any splitting of the fields.

REFERENCES

[1] J. P. Berenger, “A perfectly matched
layer for the absorption of electromag-
netic waves,” J. Comput. Physics, vol.

114, pp. 185-200, Oct. 1994.
[2] W. C. Chew and W. H. Weedon, “A 3D

perfectly matched medium from modi-
fied Maxwell’s equations with stretched
coordinates,” Microwave and Optical
Technology Latters, vol. 7, pp. 599-604,
Sept. 1994.

[3] Z.S. Sacks, D.M. Kingsland, R. Lee,
and J.F. Lee, “A perfectly matched
anisotropic absorber for use as an
absorbing boundary condition,” IEEE

Trans. Antennas Propag., vol. 43, pp.
1460-1463, Dec. 1995.

[4] J.C. Veihl and R. Mittra, “An efficient
implementation of Berenger’s perfectly
matched layer (PML) for finite difference
time domain mesh truncation,” IEEFE
Microwave and Guided Wave Letters,
vol. 6, pp. 94-96, Feb. 1996.

572



